
NASA-TM-III734

Comp. Fluid Dyn., 1995, Vol. 4, p. 219 283

Reprints available directly from the publisher

Photocopying permitted by license only

_' /z ' I,/ • . /j , - " .J

,, i , Ii

:t'_ 1995 OPA (Overseas Publishers Association)

Amsterdam B.V. Published under license by
Gordon and Breach Science Publishers SA

Printed in Malaysia

DYNAMICAL APPROACH STUDY OF SPURIOUS

STEADY-STATE NUMERICAL SOLUTIONS

OF NONLINEAR DIFFERENTIAL EQUATIONS II.
GLOBAL ASYMPTOTIC BEHAVIOR OF TIME

DISCRETIZA TIONS*

H. C. YEE

Fluid Dynamics Division, NASA Ames Research Center,

M_ff'ett Field, CA, 94035, USA

P, K. SWEBY t

Department of Mathematics, University of Reading,

Whiteknights, Readin9 RG6 2AX, England

(Received 19 August 1993; in final fi_rm 10 February 1994)

SUMMARY

The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 × 2

systems of first-order autonomous nonlinear ordinary differential equations lODEs) is analyzed. The

objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars

and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of
these schemes for practical computations in computational fluid dynamics. We show how "numerical" basins

of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior

of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious

asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable

and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that

this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and

segmentation of the basin of attraction of the true solution for finite time steps• Such distortion, shrinkage

and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious
asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for

the same (common) steady-state solution the associated basin ofattraction of the DE might be very different
from the discretized counterparts and the numerical basin of attraction can be very different from numerical

method to numerical method• The results can be used as an explanation for possible causes oferror, and slow

convergence and nonconvergence of steady-state numerical solutions when using the time-dependent

approach for nonlinear hyperbolic or parabolic PDEs.

KEY WORDS: Spurious steady-state numerical solutions, spurious asymptotes, global asymptotic
behavior, nonlinear ODEs, numerical methods, time discretizations.
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1. INTRODUCTION

The tool that is utilized for the current study belongs to a multidisciplinary field of
study in numerical analysis, sometimes referred to as "The Dynamics of Numerics 1''.

Here the phrase "to study the dynamics of numerics" (dynamical behavior of a numeri-

cal scheme) is restricted to the study of local and global asymptotic behavior and

bifurcation phenomena of the nonlinear difference equations resulting from finite

discretizations of a nonlinear differential equation (DE) subject to the variation of

discretized parameters such as the time step, grid spacing, numerical dissipation

coefficient, etc. In this paper, standard terminologies of nonlinear dynamics, chaotic

dynamics (Guckenheimer and Holmes, 1983; Hale and Kocak, 1991) and computa-
tional fluid dynamics (CFD) are assumed. For an introduction to the dynamics of

numerics and its implications for algorithm development in CFD, see Yee et al. (1991)
and Yee (1991 ) and references cited therein.

I.I Background

The phenomenon that a nonlinear DE and its discretized counterpart can have

different dynamical behavior (asymptotic behavior) was not uncovered fully until

recently. Aside from truncation error and machine round-off error, a more fundamental

distinction between the DE (continuum) and its discretizcd counterparts for genuinely
nonlinear behavior is extra solutions in the form of spurious stable and unstable

asymptotes that can be created by the numerical method. Here we use the term

"discretized conterparts" to mean the finite difference equations tot discrete maps)

resulting from finite discretizations of the underlying DE. Also we use the term "spurious

asymptotic numerical solutions" to mean asymptotic solutions that satisfy the dis-

cretized counterparts but do not satisfy the underlying ordinary differential equations

(ODEs) or partial differential equations (PDEs). Asymptotic solutions here include

steady-state solutions (fixed points of period one for the discretized equations), periodic
solutions, limit cycles, chaos and strange attractors. See Section II1 and Guckenheimer

and Holmes (19831, Hale and Kocak (1991) and Yee et al. (1991) for definitions.

Iserles (1988) showed that while linear multistep methods (LM Ms_ for solving ODEs

possess only the fixed points (fixed points of period one) of the original DEs, popular

Runge-Kutta methods may exhibit additional, spurious fixed points. It has been

demonstrated by the authors and collaborators [Yee et al., 1991; Yee, 1991; Sweby

et al., 1990; Griffiths et al., 1992; Yee and Sweby, 1993a, 1993b_ for nonlinear ODEs,

and Lafon and Yee (1991, 1992_ for nonlinear reaction-convection model equations that

such spurious fixed points as well as spurious fixed points of higher periods may be
stable below the linearized stability limit of the scheme, depending on the initial data.

Iserles et al. (1990), Hairer et al. (I 989) and Humphries (I 991) further advanced some

theoretical understanding of the dynamics of numerics for initial value problems of

ODEs. Iserles et al. and Hairer et al. classified and gave guidelines and theory on the

types of Runge-Kutta methods that do not exhibit spurious period one or period two

fixed points. Humphries (1991) showed that under appropriate assumptions if stable

_Named after the First IMA Conference on Dynamics of Numerics and Numerics of Dynamics,
University of Bristol, England, July 31 August 2, 1990.
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spuriousfixedpointsexistasthetime-stepapproacheszero,thentheymusteither
approachatruefixedpointorbecomeunbounded.However,convergenceinpractical
calculationsinvolvesafinitetimestepAtasthenumberofintegrationsn _ _ rather

than At-o0, as n--, _. There appear to be missing links between theoretical develop-

ment and practical scientific computation. Our aim is to provide some of these missing
links that were not addressed in Iserles (1988), Iserles et al. (1990), Hairer et al. (1989),

Humphries (1991) and our earlier work. In particular, we want to show in more detail

the global asymptotic behavior of time discretizations when finite but not extremely

small At is used. Other aspects that were not addressed in Iserles (1988) for different

iteration procedures in solving the resulting nonlinear algebraic equations are reported

in greater depth in our companion papers (Yee and Sweby, 1993a, 1993b).

1.2 Relevance and Motivations

Although the understanding of the dynamics of numerics of systems of nonlinear ODEs

and PDEs is important in its own right and has applications in the various nonlinear

scientific fields, our main emphasis is CFD applications. Time-marching types of

methods (time-dependent approach) are commonly used in CFD because the steady

PDEs of higher than one dimension are usually of the mixed type. When a time-

dependent approach is used to obtain steady-state numerical solutions of a fluid flow

or a steady PDE, a boundary value problem (BVP) is transformed into an initial-

boundary value problem (IBVP) with unknown initial data. If the steady PDE is
strongly nonlinear and/or contains stiff nonlinear source terms, phenomena such as

slow convergence, nonconvergence or spurious steady-state numerical solutions and

limit cycles commonly occur even though the time step is well below the linearized

stability limit and the initial data are physically relevant. One of our goals is to search
for logical explanations for these phenomena via the study of the dynamics of numerics.

Here the term "time-dependent approach" is used loosely to include some of the

iteration procedures (due to implicit time discretizations), relaxation procedures, and

preconditioners for convergence acceleration strategies used to numerically solve

steady PDEs. This is due to the fact that most of these procedures can be viewed as

approximations of time-dependent PDEs (but not necessarily the original PDE that
was under consideration). If one is not careful, numerical solutions other than the

desired one of the underlying PDE can be obtained (in addition to spurious asymptotes
due to the numerics).

One consequence of the existence of stable and unstable spurious asymptotes below
or above the linearized stability limit of the numerical schemes is that these spurious

features may greatly affect the dynamical behavior of the numerical solution in practice
due to the use of a finite time step. As discussed in details in later sections and also in

Yee et al. (1991), Yee and Sweby (1993a, b), Lafon and Yee (1992), Sweby and Yee
11991), Yee et al. (1992), it is possible that for the same steady-state solution, the

associated basin of attraction of the underlying DEs (which initial conditions lead to

which asymptotic states) might be very different from that of the basin of attraction of
the discretized counterparts due to the existence of spurious stable and unstable

asymptotic numerical solutions. In other words, there is a separate dependence on
initial data for the individual DEs and their discretized counterparts. Here the basin of

attraction is a domain of a set of initial conditions whose solution curves (trajectories)
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all approach the same asymptotic state. Also we use the term "exact" and "numerical"

basins of attraction to distinguish "basins of attraction of the underlying DEs" and
"basins of attraction of the discretized counterparts".

In view of the spurious dynamics, it is possible that numerical computations may

converge to an incorrect steady state or other asymptote which appears to be physically
reasonable. One major implication is that what is expected to be physical initial data

associated with the underlying steady state of the DE might lead to a wrong steady

state, a spurious asymptote, or a divergence or nonconvergence of the numerical

solution. In addition, the existence of spurious limit cycles may result in the type of

nonconvergence of steady-state numerical solutions observed in time-dependent

approaches to the steady states. It is our belief that the understanding of the symbiotic

relationship between the strong dependence on initial data and permissibility of
spurious stable and unstable asymptotic numerical solutions at the fundamental level

can guide the tuning of the numerical parameters and the proper and/or efficient usage

of numerical algorithms in a more systematic fashion. It can also explain why certain

schemes behave nonlinearly in one way but not another. Here strong dependence on
initial data means that for a finite time step At that is not sufficiently small, the

asymptotic numerical solutions and the associated numerical basins of attraction

depend continuously on the initial data. Unlike nonlinear problems, the associated
numerical basins of attraction of linear problems are independent of At as long as At is

below a certain upper bound.

Nonunique Steady-State Solutions of Nonlinear DEs vs. Spurious Asymptotes: The phe-

nomenon of generating spurious steady-state numerical solutions (or other spurious

asymptotes) by certain numerical schemes is often confused with the nonuniqueness Ior

multiple steady states) of the DE. In fact, the existence of nonunique steady-state
solutions of the continuum can complicate the numerics tremendously (e.g., the basins

of attraction) and is independent of the occurrence of spurious asymptotes of the
associated scheme. But, of course, a solid background in the theory of nonlinear ODEs

and PDEs and their dynamical behavior is a prerequisite in the study of the dynamics of
numerics for nonlinear PDEs. See Yee et al., 1991 for a discussion. It is noted that the

approach and primary goal of our work is quite different from the work of e.g., Beam

and Bailey (1988_ and Jameson (1991). The main goal of Beam and Bailey (1988) and
Jameson (1991) was to study the nonunique steady-state solutions admitted by the PDE

as the physical parameter is varied. Our primary interest is to establish some working

tools and guidelines to help delineate the true physics from numerical artifacts via the

dynamics of numerics approach. The knowledge gained from our series of studies (Yee
et al., 1991; Lafon and Yee,1991; Lafon and Yee, 1992) hopefully can shed some light on

the controversy about the existence of multiple steady-state solutions through numeri-
cal experiments for certain flow types of the Euler and/or Navier Stokes equations.

1.3 Objectives and Outline

The primary goal of the series of papers (present and the companion papers Yee et al.,

1991; Yee and Sweby, 1993a, b; Lafon and Yee, 1991; Lafon and Yee, 19921 is to lay the

foundation for the utilization of the dynamics of numerics in algorithm development for

computational sciences in general and CFD in particular. This is part ll of this series of

papers on the same topic. Part I Wee et al., 1991 ) concentrated on the dynamical behavior
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of timediscretizationsfor scalarnonlinearODEs.Theintentofpart I was to serve
as an introduction to motivate this concept to researchers in the field of CFD and to

present new results for the dynamics of numerics for first-order scalar autonomous
ODEs.

The present paper, the second of this series, is devoted to the study of the dynamics
of numerics for 2 × 2 systems of ODEs. Here we show how "numerical" basins of

attraction can complement the bifurcation diagrams in gaining more detailed global
asymptotic behavior of numerical methods for nonlinear DEs. We show how in the

presence of spurious asymptotes the basins of the true stable steady states can be

segmented by the basin of the spurious stable and unstable asymptotes. One major

consequence of this phenomenon which is not commonly known is that this spurious

behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage

and segmentation of the basin of attraction of the true solution for finite time steps.
Such distortion, shrinkage and segmentation of the numerical basins of attraction

will occur regardless of the stability of the spurious asymptotes, and will occur for
unconditionally stable implicit linear multistep methods. In other words, for the same

steady-state solution, the associated basin of the DE might be very different from its
discretized counterparts. The basins can also be very different from numerical method

to numerical method. The present study reveals for the first time the detail interlock-

ing relationship of numerical basins of attraction and the causes of error, and slow

convergence and nonconvergence of steady-state numerical solutions when using the
time-dependent approach.

The article of Lafon and Yee (1991), the third of this series, was devoted to the study
of the dynamics of numerics of commonly used numerical schemes in CFD for a model

reaction-convection equation. The article of Lafon and Yee (1992), the fourth of

this series, was devoted to a more detailed study of the effect of numerical treatment

of nonlinear source terms on nonlinear stability of steady-state numerical solution

for the same model nonlinear reaction-convection BVP. In our companion papers

(Sweby et al., 1990; Griffiths et al., 1991a, 1992b), a theoretical bifurcation analysis of
a class of explicit Runge-Kutta methods and spurious discrete travelling wave phenom-

enon were presented. In yet another companion paper, Yee and Sweby (I 993a), the global
asymptotic nonlinear behavior of three standard iterative procedures in solving

nonlinear systems of algebraic equations arising from four implicit LMMs is analyzed
numerically.

1.4 Outline

The outline of this paper is as follows. Section II discusses the connection of the

dynamics of numerics for systems of ODEs and numerical approximations of time-
dependent PDEs. Section III reviews background material for nonlinear ODEs and

their numerical methods. Section IV describes four 2 x 2 systems of nonlinear
first-order autonomous model ODEs. Section V describes the 11 time discretizations

and the associated bifurcation diagrams for the four model ODEs. Section VI discusses

the combined basins of attraction and bifurcation diagrams for the underlying
schemes. Comparison between a linearized implicit Euler and Newton method is

briefly discussed in Section 6.5. The paper ends with some concluding remarks in
Section VII.
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2. THE DYNAMICS OF NUMERICS OF SYSTEMS OF ODEs AND

NUMERICAL APPROXIMATIONS OF TIME-DEPENDENT PDEs

For finite discretizations of PDEs, spurious asymptotes and especially spatially-

varying spurious steady states can be independently introduced by time and spatial

discretizations (Yee et al., 1991; Lafon and Yee, 1991; Lafon and Yee, 1992). The interaction

between temporal and spatial dynamical behavior is more complicated when one is

dealing with the nonseparable temporal and spatial finite-difference discretizations

such as the Lax-Wendrofftype. The analysis and the different features of the numerics

due to temporal and spatial discretizations can become more apparent by separable

temporal and spatial finite difference methods (FDM). A standard method for obtain-

ing such a FDM is the method of lines (MOL) procedure where the time-dependent
PDE is reduced to a system of ODEs (by replacing the spatial derivatives by finite differ-

ence approximations). The resulting approximation is called semi-discrete, since the

time variable is left continuous. The semi-discrete system in turn can be solved by the
desired time discretizations. Similar semi-discrete systems can be obtained by finite

element methods except in this case an additional mass matrix is involved. Besides the

MOL approach, coupled nonlinear ODEs can arise in many other ways when analyzing
nonlinear PDEs. See for example Globus et al. (1991), Hung et al. (1991), Foias et al.

(19851, Temam (1989), Kwak (1991), Schecter and Shearer (1990), and Shearer et al.
(1987). Among these possibilities, the idea of inertial manifold (IM) and approximate

inertial manifold (AIM} for incompressible Navier-Stokes (Foias et al., 1985; Temam,

1989; Kwak, 1991), the relationship between shock waves, heteroclinic orbits of systems
of ODEs (Schecter and Shearer, 1990; Shearer et al., 1987), and flow visualization of

numerical data (Globus et al., 1991; Hung, 1991) are touched upon here.

2.1 Asymptotic Analysis of the Method of Lines Approach

When the ODEs are obtained from a semi-discrete approximations of PDEs, the

resulting system of ODEs contains additional system parameters and discretized

parameters as opposed to physical problems governed by ODEs. Depending on the

number of grid points "J" used, the dimensions of the resulting system of semi-discrete

approximations of ODEs can be very large. Also, depending on the differencing scheme
the resulting discretized counterparts ofa PDE can be nonlinear in At, the grid spacing

Ax and the numerical dissipation parameters, even though the DEs consist of only one

parameter or none. One major consideration is that one might be able to choose

a "safe" numerical method to solve the resulting system of ODEs to avoid spurious

stable steady states due to time discretizations. However, spurious steady states and

especially spatially varying steady states introduced by spatial discretizations in
nonlinear hyperbolic and parabolic PDEs for CFD applications appear to be more

difficult to avoid. In the case of the MOL approach, if spurious steady states due to

spatial discretizations exist, the resulting ODE system has already inherited this

spurious feature as part of the exact solutions of the semi-discrete case. We remark that

spurious stable and unstable asymptotes other than the steady states due to time

discretizations are also more difficult to avoid than spurious steady states. See Sections

V and VI for some illustrations. Taking for example the nonlinear ODE models that are
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considered,it is relativelyeasyto avoidspurioussteadystatesdueto timediscretiz-
ationssince,ifanumericalsteadystateU* for the ODE dU/dt = S(U) is spurious, then

S(U*) ¢ 0. This is not the case for spurious asymptotes such as limit cycles.

In addition to the aforementioned considerations, it is well known from the theory

of nonlinear dynamics for ODEs that much of tha established theory and known
behavior of nonlinear dynamics are restricted to lower dimensional first-order ODEs

(or for problems that exhibit lower dimensional dynamical behavior). Moreover, if

higher than two-time level numerical methods are used, the dynamics of these

discretized counterparts usually are richer in structure and more complicated to

analyze than their two-time level cousins. Therefore, in order to gain a first hand

understanding of the subject we restrict our study to 2 x 2 systems of first-order

autonomous ODEs and two-time level numerical methods with a fixed time step, even

though the current study is far removed from the realistic setting. Studies of 3 × 3
systems and general J × J systems are in progress.

Due to the complexity of the subject matter, this paper concerns fixed time step (and

fixed grid spacing) time-marching methods only. The fixed or local variable time step

control method study can also shed some light on identifying whether certain flow

patterns are steady or unsteady. See Yee et al. (1990) for some examples. Proper

regulation of a variable time step to prevent the occurrence of spurious steady-state
numerical solutions will be a subject of future research. In order to isolate the different

causes and cures of slow convergence and nonconvergence of time-marching methods,

our study concerns nonlinearity and stiffness that are introduced by DEs containing

smooth solutions. Nonlinearity and stiffness that are introduced by the scheme, the

coupling effect in the presence of a source term (terms) in coupled system of PDEs, the
highly stretched nonuniform structured and unstructured grids, the discontinuities in

grid interfaces and/or the discontinuities inherent in the solutions, and external flows

that need special boundary conditon treatment with a truncated finite computation

domain are added factors and require additional treatment or different analysis. These

are not considered at the moment. Generalization of our study to include grid adaption

as one of the sources of nonlinearity and/or stiffness introduced by the numerics is
reported in Sweby and Yee (1964) and Buddet al. I1994).

2.2 Inertial Manifold ( IM ) and Approximate Inertial Manifold (AIM)

The concept of IMs was introduced by Foias et al. (1985). See Foias et al. (1985),

Temam (1989_ and Kwak (199l) for details of the subject. The key idea of lMs and

AIMs is to establish theories to aid in better understanding of nonlinear phenomena

and turbulence via the study of the interaction of short and long wavelengths of

dissipative systems. Basically, an IM is a finite-dimensional submanifold that contains

all the attractors and invariant sets of an infinite-dimensional dynamical system

described by some dissipative PDEs. It establishes the criterion for the reduction of
long-term dynamics of certain infinite-dimensional problems to a finite system of

ODEs. An attractive feature is that the reduction introduces no error in the problem.

That is, the IM contains all pertinent information about the long-term dynamics of the

original system. One of the main objectives of AIMs is to handle cases where the IMs

are not known to exist. AIMs also can help in finding good algorithms for dealing with
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the IMs that are known to exist. AIMs may also help reduce finite but extremely large

systems of ODEs to lower-dimensional problems. In a nut shell, the derivation of IMs
and AIMs is based on the decomposition of the unknown function into large-scale and

small scale components. In the case of fluid dynamics, those structures can be identified

as large and small eddies. Thus an IM or AIM corresponds to an exact or approximate
interaction law between the short and long wavelengths. K wak 1199 I) showed that the

long-term dynamics of some two-dimensional incompressible Navier-Stokes equations
can be completely described by a finite system of ODEs. Kwak does so by finding

a nonlinear change of variable that embeds the incompressible Navier-Stokes equa-

tions in a system of reaction-diffusion equations that possess an IM. All of the theories
of IMs and AIMs are very involved and interested readers are encouraged to read Foias

et al. (1985), Temam (1989) and Kwak (1991) and the references cited therein.

2.3 Relationship Between Shock Waves and Heteroclinic Orbits of Systems of ODEs

Another example of the importance of understanding the "dynamics" and the "dy-

namics of numerics" of systems of ODEs is related to the study of shocks using

equilibrium bifurcation diagrams of associated vector fields. This was introduced by
Shearer et al. 0987). The authors find of great interest how one can reduce the study of

admissible shock wave solutions ofa 2 × 2 hyperbolic conservation laws to the study of

heteroclinic orbits of a system of nonlinear ODEs. Further development in this area

can help in constructing suitable approximate Riemann solvers in numerical computa-

tions. Schecter and Shearer (1990) studied undercompressive shocks for nonstrictly

hyperbolic conservation laws by adding information to the equilibrium bifurcation

diagrams (introduced by Shearer et al.) about heteroclinic orbits of the vector fields.
The augmented equilibrium bifurcation diagrams are then used in the construction of

solutions of Riemann problems.

2.4 Dynamics of Numerics and Flow Visualizations of Numerical Data

The use of flow visualization of numerical data (numerical solutions of finite discretiz-

ations of e.g., fluid flow problems) in an attempt to understand the true flow physics has

become increasingly popular in the last decade. See, Globus et al. (1991) and Hung et al.
(1991) and references cited therein. Many of the techniques rely on the extraction of

the boundary surfaces by analyzing a set of appropriate vector fields. Approximations

are then performed based on this set of vector fields. The study of the topological

features of certain flow physics based on the numerical data is then related to the

study of fixed points of the associated systems of ODEs. Fluid problems with known

flow physics can be used to reveal how well the associated vector fields of the
numerical data can mimic the true physics. It can also help to delineate spurious

flow patterns that are solely due to the numerics. At the present time we are entering
into the regime where CFD is extensively used to aid the understanding of complicated

flow physics that is not amenable to analysis otherwise. In the situation where the
numerical data indicate flow structures which are not easily understood, a good

understanding of the spurious dynamics that can be introduced by the numerics is
needed.
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3. PRELIMINARIES

Consider a 2 x 2 system of first-order autonomous nonlinear ODEs of the form

dU

dt S(U), (3.1)

where U and S are vector functions of dimension 2, and S(U) is nonlinear in U.

A fixed point Ue of an autonomous system (3.1) is a constant solution of (3.1);
that is

S(Ur.) = 0, (3.2)

where the subscript "E" stands for "exact" and U E denotes the fixed points of the ODE

as opposed to the additional fixed points of the discretized counterparts (spurious fixed
points) due to the numerical methods which we will encounter later.

Let the eigenvalues of J(Ue) = (OS/(3U)IvE (the Jacobian matrix of S(U) evaluated

at Ue) be 2_ and 22. Here J(UE) is assumed to be nonzero. The fixed point U e is

hyperbolic if Re(2i) :/: 0, i = 1, 2. If both 2i are real, U Eis a saddle if,(_ 22 < 0 and a node if
2a2 2 > 0. If exactly one 2 i = 0, then UE is semihyperbolic. If the eigenvalues are

complex, then U E is a spiral. The "tightness" of the spiral is governed by the magnitude

of the imaginary part of the eigenvalues. If the eigenvalues both have a zero real part,

then U E is non-hyperbolic. Such a fixed point is called a center. Under this situation,

more analysis is needed to uncover the real behavior of (3.1) around a non-hyperbolic

fixed point. The fixed point U e is stable if both 21 and '_2 have negative real parts. U e is

unstable if a 2 i has a positive real part. In the non-hyperbolic case the fixed point is
neutral.

Ifdue to a variation of a parameter of the ODE a fixed point becomes unstable, then,

if at the point of instability the eigenvalues are distinct and real, the resulting bifurcation

will be to another fixed point. Such bifurcation is called a steady bifurcation. If, however,
the eigenvalues are complex, then the bifurcation will be of a Hopf type. This is a
slightly simplified classification, since our main concern in this work is not on the

variation of the ODE parameter. Detailed background information can be found in
(Guckenheimer and Holmes, 1983; Hale and Kocak, 1991).

Consider a nonlinear discrete map from a finite discretization of (3.1)

Un+ 1 = U _ + D(U _, r), (3.3)

where r =At and D(Un, r) is linear or nonlinear in r depending on the numerical
method. A fixed point U o of(3.3) is defined by U "+ _ = U _, or

Uo = UD + D(UD, r) (3.4)

or D(UD, r)=O. A fixed point U o of period p>0 of (3.3) is defined by U"÷P= U n

with un+k_ U n of k <p. In the context of discrete systems, the term "fixed point"

without indicating the period means "fixed point of period 1" or the steady-state

solution of (3.3). Here we use the term asymptote to mean a fixed point of any period,
a limit cycle (in the discrete sense invariant set), chaos, or a strange attractor.
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The type of finite discretization of (3.1) represented in (3.3) assumed the use of
two-time level schemes. Otherwise the vector dimension of (3.3) would be 2(k - 1)
instead of 2 where k is the number of the time level of the scheme. Here the vector

function D is assumed to be consistent with the ODE (3.1) in the sense that fixed points

of the ODE are fixed points of the scheme; however, the reverse need not hold. It is this

feature accompanied by other added dynamics, that the discretized counterparts of the

underlying ODE possess a much richer dynamical behavior than the original ODE.

Thus the fixed points U o of D(U o, r) = 0 may be true fixed points U e of(3.1) or spurious

fixed points U s. The spurious fixed points U s are not roots of S(U)= 0. That is
S(U_) # O. Spurious asymptotes are asymptotic numerical solutions of (3.3) but not

(3.1).

Letting U n = U o + ,P, then a perturbation analysis on (3.3) yields

OD(UD, r)']" + 16°.6"+'= 1+ _ ] (3.5)

Assuming dD(UD, r)/_3U ¢ 0, then the fixed point U o is stable if the eigenvalues of

Jo = I + OD(Uo, r)/OU lie inside the unit circle. If both eigenvalues are real and both lie

inside (outside) the unit circle, then the fixed point is a stable (unstable) node. If one is

inside the unit circle and the other outside, then the fixed point is a saddle. If both

eigenvalues are complex, then the fixed point is a spiral. If the eigenvalues lie on the unit

circle, then the fixed point of(3.3) is indeterminant and additional analysis is required to

determine the true behavior of(3.3) around this type of fixed point. For a more refined

definition and the difference in fixed point definition between ODEs and discrete maps,
see Panov et al. (1956), Perron (1929) and Hsu (1987) and references cited therein. The

reader is referred to Guckenheimer and Holmes (1983), Hale and Kocak (1991),

Langford and Iooss (1980), and Werner (1980) for full details on the subject of

bifurcation theory.

An important feature which can arise (for both systems of ODEs (3.1) and their

discretizations) as the result of a Hopf bifurcation is a limit cycle where the trajectory

traverses a closed curve in phase space. In all but a few simple cases such limit cycles are

beyond analysis.

4. MODEL 2 x 2 SYSTEMS OF NONLINEAR FIRST-ORDER

AUTONOMOUS ODEs

Four 2 x 2 systems of nonlinear first-order autonomous model ODEs are considered.

The systems considered with U r = (u, v) or z = u + iv are a

1. Dissipative complex model:

d2

dt z(i+_. Izl 2) (4.1)
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2. Damped Pendulum model:

du
-- = v (4.2a)
dt

du

dt = - ev - sin(u) (4.2b)

3. Predator-Prey model:

du
-- = - 3u + 4u 2 - 0.5uv - u 3 (4.3a)
dt

dl)
-- = - 2.1 v + uv (4.3b)
dt

4. Perturbed Hamiltonian System model:

du

_-_ = e(1 - 3u) + ] [1 - 2u + u2 - 2v(1 - u)] (4.4a)

dv

dt -- e(1 - 3v) - ¼[1 - 2v + v2 - 2v(1 - v)] (4.4b)

Here e is the system parameter for (4.1), (4.2) and (4.4).

The perturbed Hamiltonian model can be related to the numerical solution of the

viscous Burgers' equation with no source term

_u I O(u 2) _Zu
q /_>o. (4.5)_t 2 & -_'_-_x_

Let uj(t) represent an approximation to u(xj, t) of (4.5) where xj =jAx, j= 1 .... ,J,
with Ax the uniform grid spacing. Consider the three-point central difference in space

J
with periodic condition us+ i = u_, and assume Zi= 1 u_= constant, which implies that

J
_j= i dujdt = 0. If we take J = 3 and Ax = 1/3 then, with _:= 9fl, this system can be
reduced to a 2 × 2 system of first-order nonlinear autonomous ODEs (4.4) with

U r = (ul, u2) = (u, v). In this case, the nonlinear convection term is contributing to the

nonlinearity of the ODE system (4.4).

These four equations were selected to bring out the dynamics of numerics for four

different types of solution behavior of the ODEs. The dissipative complex system (4.1)
possesses either a unique stable fixed point or limit cycle with an unstable fixed point

depending on the value ofe. This is the rare situation where the analytical expression of

a limit cycle can be found. The purpose of choosing (4.1) is to illustrate the numerical

accuracy of computing a limit cycle and the spurious dynamics associated with this

type of asymptote. The damped pendulum (4.2), arising from modelling of a physical
process, exhibits a periodic structure of an infinite number of fixed points. The

predator-prey model (4.3), arising from modelling of biological process, exhibits
multiple stable fixed points without a periodic pattern as model (4.2). The perturbed

Hamiltonian model (4.4), which arises as a gross simplification of finite discretization of
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the viscous Burgers' equation, exhibits an unique stable fixed point. Following the

classification of fixed points of(3.1) in Section III, one can easily obtain the following:

Fixed Point of (4.1): The dissipative complex model has a unique fixed point at

(u, v) = (0, 0) for _:_<0. The fixed point is a stable spiral if;3 < 0. It is a center if_: = 0. For

> 0, the fixed point (0, 0) becomes unstable with the birth of a stable limit cycle with

radius equal to v_ centered at (0, 0). Figure 4.1 shows the phase portrait (u-v plane) of

system (4.1) for _:= - 1 and _:= 1 respectively. Here the entire (u, t_)plane belongs to the
basins of attraction of the stable fixed point (0,0) ife < 0. On the other hand, if c. > 0, the

entire (u, v) plane except the unstable fixed point (0, 0) belongs to the basin of attraction

of the stable limit cycle centered at (0,0).

Fixed Points _" (4.2): The damped pendulum (4.2) has an infinite number of fixed

points, namely (krt, 0) for integer k. Ifk is odd, the eigenvalues of the Jacobian J(UE) are

of opposite sign and these fixed points are saddles. If k is even, however, two cases must

be considered, depending on the value of e.. If _ < 2 and positive, the eigenvalues are

complex with negative real part and the fixed points are stable spirals. If _:_> 2, the
eigenvalues are real and negative and the fixed points are nodes. If _:= 0, the spirals

become centers. Figure 4.2 shows the phase portrait and their corresponding basins of

attraction for system (4.2). The different shades of grey regions represent the various
basins of attraction of the respective stable fixed points for 4:= 0.5 and c = 2.5.

Fixed Points t_f (4.3): The fixed points of the predator-prey equation are less regular

than those for the damped pendulum equation. System (4.3) has four fixed points (0,0),

(0, 1), (3,0) and (2.1, 1.98). By looking at the eigenvalues of the Jacobian of S, one finds

that (0,0) is a stable node, (2.1, 1.98) is a stable spiral, and (1,0) and (3,0) are saddles.

Figure 4.3 shows the phase portrait and their corresponding basins of attraction for

system (4.3). The different shades of grey regions represent the various basins of
attraction of the respective stable fixed points. The white region represents the basin of
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Figure 4.1 Phase Portraits and basins of Attraction Dissipative ('omplex Equation.
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Figure 4.4
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Phase Portraits and Basins of Attraction Viscous Burger's Equation (Central Difference in

divergent solutions. Note that the trajectories near the unstable separatrices actually

do not merge with the unstable branch ofseparatrices, but only appear to merge due to
the thick drawings of the solution trajectories.

Fixed Points of(4.4): The perturbed Hamiltonian has four steady-state solutions of

which three are saddles and one is a stable spiral at (1/3, 1/3) for e =/=0. For e = 0 the

stable spiral becomes a center. Figure 4.4 shows the phase portrait and their corre-

sponding basins of attraction for system (4.4). The shaded region represents the basins

of attraction for the fixed point (1/3, 1/3) for e-- 0 and _;-- 0.01. The white region

represents the basin of divergent solutions. From here on we refer to (4.4) also as

a viscous Burgers' equation with central difference in space.

5. NUMERICAL METHODS AND BIFURCATION DIAGRAMS

This section describes the 11 time discretizations and their corresponding bifurcation

diagrams for the four model ODEs (4.1)-(4.4). The 11 numerical methods are listed in

Section 5.1. Section 5.2 discusses the stability of selected fixed points of the discretized

counterparts of the model ODEs as functions of system parameters. Section 5.3
discusses the bifurcation diagrams as a function of the discretized parameter At with the

system parameter held fixed.

5.1 Numerical Methods

The 9 explicit and two implicit methods considered are the explicit Euler, two
second-order Runge-Kutta, namely, the modified Euler (R-K 2j and the improved

Euler (R-K 2), two third-order Runge-Kutta (R-K 3), a fourth-order Runge-Kutta

(R-K 4), the two and three-step predictor-corrector (Lambert, 1973), and noniterative

linearized forms of the implicit Euler and the trapezoidal methods.
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(1) Explicit Euler (lst-order; R-K 1):

f.+ 1 = U" + rS"; S" = S(U"k (5.1)

(2) Modified Euler (R-K 2):

U _÷1 =U"+rS(U"+2S" ), (5.2)

(3) Improved Euler (R-K 2):

/.

U "÷_ = U" + -_[S _ + S(U + rS")], (5.3)

(4) Heun (R-K 3):

(5) Kutta (R-K 3):

(6) R-K 4:

r

U.+ t = U" +-_(kl +3k3)

k2 =S _

k3=s(v" >k+ 3 2},

t"

U "+t=U"+_(k l+4k2+k 3)

k 3 = S(U" - rk 1 + 2rk2),

r k
U "+I=U"+_(l+2k2+2k3+k4)

kl = S"

(5.4)

(5.5)

(5.6)



234 H. C. YEE AND P. K. SWEBY

k 4 = S(U" + rk3),

(7, 8) Predictor-eorrector for m = 2, 3 (PC2, PC3):

U _°_= U" +rS"

r n

U_k+tj=U _ +_2[S + s_k_], k=O,l ..... m-- I

r

U,+I=U"+_[S,+S _m _],

(9) Adam-Bashforth (2nd-order):

/.

u "+' = u" + _ [3s(u") - s(u"- 1)],

(10) Linearized Implicit Euler:

U" + 1 = U" + r(I - rJ")- 1S"

\OU] and det(l -- rJ _) :/= O,

(11) Linearized Trapezoidal:

U"+I--U"+ r(l-2 J")- ' S"

J"=(OS_"\OU] (2r)and det l-zd _0,

(5.7)

15.8)

(5.9)

(5.1ot

where the numeric identifier after the "R-K" indicates the order of accuracy of the
scheme and r = At and det( ) means the determinant of the quantity inside the ().

Schemes (10) and (11) are unconditionally stable methods. See Beam and Warming

(1976) and Yee (1989) for the versatility of the linearized implicit Euler and linearized

trapezoidal methods in CFD applications. A comparison between Newton method in

solving the steady part of the ODEs and the linearized implicit method (5.9) for model

(4.4) is included in Section 6.5. Studies on Newton method in solving the steady state

part of the PDE and some iteration procedures in solving the nonlinear algebraic
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equation resulting from four implicit LMMs are reported in a separate paper (Yee and
Sweby 1933a). Although the explicit Euler can be considered as an R-K 1, it is also

a LMM. All of the R-K methods (higher than first order) and the predictor-corrector
methods are nonlinear in the parameter space r, and all LMMs are linear in r. As

discussed in Yee et al. (1991), a necessary condition for a scheme to produce spurious
fixed points of period one is the introduction of nonlinearity in the parameter space r. It

can be shown later that this property plays a major role on the shapes and sizes of the

associated numerical basins of attraction of the scheme. For simplicity in referencing,

hereafter we use "implicit Euler" and "trapezoidal" to mean the linearized forms (5.9)
and (5.10), respectively, unless otherwise stated.

5.2 Stability of Fixed Points of Numerical Methods as a Function of System
Parameters

In our later study, we assume a fixed system parameter so that only the discretized

parameter comes into play. However, in order to get a feel for the numerical stability of

these schemes around selected stable fixed points U E as a function of the system param-

eter e, Figures 5.1-5.3 show the stability regions of the schemes as a function of the

s- R-K 1
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Figure 5.1 Stability Regions vs. System Parameters Dissipative Complex Equation.
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Figure 5.1 (Continued)

I , I

1 2

system parameter e around a selected fixed point for each of the models. The linearized
stability regions for the R-K methods of the same order behave in exactly the same

manner, and the linearized stability regions around stable U_ of the linearized

implicit methods are not interesting, since they have the same regions of stability as
the ODEs.

The stability diagrams presented were obtained by numerically solving the absolute

stability polynomials for the various methods, in most cases using Newton iteration.

For the Runge-Kutta schemes (of order p _<4) the stability (Grifliths et ai., 1992;
Lambert, 1973) condition is that

_ Pr p [

1 + _.r + ..- +-_-.v <1,
(5.11)

where 2 are the eigenvalues of the Jacobian of S(U). For the Predictor-Corrector of

steps p = 2, 3 the stability condition is that

I ,_PrpII +).r + -.. +_- <1,
(5.ll)
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and for the Adams-Bashforth method the roots p of

/_2- I+T//_+_=o
(5.13)

satisfy [_[ < 1. Note that all of these expressions only hold for the U e fixed points of the
system.

In all cases the boundary of the stability region is when unit modulus is attained. The

linearized implicit Euler and trapezoidal methods are unconditionally stable for the
stable exact fixed points U e of the ODE systems we are considering.

These stability regions can be used to isolate the key regions of the e parameter to be
considered for the study ofdynamics of numerics later. Due to the enormous number of

possibilities, detailed study can only concentrate on one to two representative system

parameters. Even with such a restriction, as can be seen later, computing the corre-

sponding bifurcation diagrams and basins of attraction is very CPU intensive. Fortu-
nately the computation can be made highly parallel. Figures 5.1 5.3 also can serve as

a spot check on the numerical results presented in the next section.
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Figure 5.2 Stability Regions vs. System Parameters Damped Pendulum Equation.
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5.3 Bifurcation Diagrams

In this section, we show the bifurcation diagrams of selected R-K methods. It illus-

trates some of the many ways in which the dynamics of a numerical discretization

of 2 x 2 first-order autonomous nonlinear system of ODEs can differ from the

system itself. Note that there is no limit cycle or higher dimensional tori counter-

part for the scalar first-order autonomous ODEs. Spurious limit cycles and higher

dimensional tori can only be introduced by the numerics when solving nonlinear
ODEs other than scalar first-order autonomous ODEs (if 2-time level schemes are

used) and/or by using a scheme with higher than two-time level for the scalar first-
order autonomous ODEs. |n Section Vl, we showed how numerical basins of attrac-

tion can complement the bifurcation diagrams in gaining more detailed global

asymptotic behavior of numerical schemes. We purposely present our results in

this order (not showing the basins of attraction) in order to bring out the importance
of basins of attraction for the time-dependent approach in obtaining steady-state
numerical solutions.

Even though the analytical solutions of the these models are known, depending on

the scheme, the dynamics of their discretized counterparts might be very difficult to

analyze. In particular, some analytical linearized analysis (without numerical computa-

tions) of fixed points of periods one and two is possible for the predator-prey and the

damped pendulum case. However, analytical analysis for the dissipative complex
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model and the perturbed Hamiltonian is not practical. For a detailed analysis of these

selected cases, readers are referred to Sweby and Yee (1991). For the majority of the cases

where rigorous analysis is impractical we study the dynamics of numerics using numerical
experiments.

Note that some global solution behavior of fixed points of the nonlinear discretized

equations (5.1) (5.10) for (4.1) (4.4) can be obtained by the pseudo arclength continua-
tion method devised by Keller (1977), a standard numerical method for obtaining

bifurcation curves in bifurcation analysis. A major shortcoming of the pseudo arclength

continuation method is that for problems with complicated bifurcation patterns, it

cannot provide the complete bifurcation diagram without known start up solutions

for each of the main bifurcation branches before one can continue the solution along

a specific main branch. For spurious asymptotes it is usually not easy to locate even just
one solution on each of these branches.

The nature of our calculations requires thousands of iterations of the same equation

with different ranges of initial data on a preselected (u, v) domain and range of the
discretized parameter space At. Since the NASA Ames CM-2 allows vast numbers

(typically 65,536) of calculations to be performed in parallel, our problem is perfect for
computation on the CM-2.
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To obain a "full" bifurcation diagram, the domain of initial data and the range of the

At parameter are typically divided into 512 equal increments. For each initial datum
and At, the discretized equations are preiterated 3,000-- 5,000 (more or less depending

on the ODE and scheme) before the next 4,000-6,000 iterations are plotted. The

preiterations are necessary in order for the trajectories to settle to their asymptotic

value. The high number of iterations plotted (overlay on the same plot) is to detect

periodic orbits or invariant sets. Since the results are a three dimensional graph

((At, u, r,)), we have taken slices in a given constant t_- and u-plane in order to enhance

viewing the decrease CPU computations. Note that with this method of computing the

bifurcation diagrams, only the stable branches are plotted. Some of the bifurcation

diagrams in a _' = constant plane for the four model ODEs and for the modified Euler,

improved Euler, Kutta and R-K 4 methods are shown in Figures 5.4-5.8. Figure 5.4
shows a typical example of spurious stable fixed points (branches 3 and 4 on the

diagram) occurring below the linearized stability by the modified Euler method. It also

shows the existence of spurious asymptotes such as limit cycles, higher order periodic

solutions and possibly numerical chaos (chaos introduced by numerics), See later

sections and subsections for further details. Selected bifurcation diagrams for the rest of
the numerical methods are illustrated in Section IV with basins of attraction

superimposed (see Figures 6.3 6.5,6.13, 6.14, and 6.19 6.20). See also the original

NASA internal report RNR-92-008, March 1992 for additional illustrations. Due to the
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plotting package, the labels (u,, v,) on all of the figures are (u", v"). In the plots, r = At
unless stated.

The term "full bifurcation" as defined in Yee et al. (1991) is used to mean bifurcation

diagrams that cover the essential lower-order periods in such a way as to closely resolve

the "true" bifurcation diagram of the underlying discrete map for a selected range of
initial data domains. This is necessary since solutions with different initial conditions

will converge to different asymptotic limits. All of the computations shown are "full"
bifurcation diagrams.

The following summarizes the spurious dynamical behavior of the 11 numerical

methods based on selected domains of initial data and ranges of the discretized

parameter r. Numerical results agree with the analytical linearized analysis reported in
Sweby and Yee (1991).

B!fureation Diaqrams of Numerical Methods lot Model (4.1): For _:= 0, (4.1) is nondis-
sipative (or a Hamiltonian system), and all of the I ! numerical methods which are

non-simplectic converge quite slowly to the fixed point (0,0). We conjecture that

simplectic schemes (Sanz-Serna, 1990) would be more appropriate for _:=0. For

sufficiently small negative (positive) ,:, all of the studied schemes converge extremely

slowly to the stable spiral (limit cycle). This is a typical example of slow convergence
of the numerical solution due to the stiffness of the system parameter. While the
bifurcation diagrams for _:_<0 for the various numerical methods are not too

interesting, the bifurcation diagrams for _:> 0 are very instructive. Figure 5.5 shows the
bifurcation diagrams for the four R-K methods for _:= I.
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Note also that R-K 4 method gives the most overall accurate numerical approxima-

tions of the true limit cycle with radius x/_ centered at (0,0). The Adam-Bashforth,
PC2, PC3, implicit Euler and trapezoidal methods give the least accurate numerical

approximation of the limit cycle for r closer to the linearized stability. The R-K 4 and
Heun methods produced spurious higher-order limit cycles (invariant set of multiple
circles on the diagrams). See Section IV and Figures 6.6 and 6.8 for more details. These
diagrams illustrate the unreliability of trying to compute a true limit cycle with any
sizable r. This should not be surprising since the scheme only gives an O(rp)approxima-
tion to the solution trajectories• In addition, since the limit cycle is not a fixed point, we
would expect inaccuracies to be introduced• However, inaccuracies are not easy to
detect in practice, especially when a numerical solution produces the qualitative
features expected. See Section VI and Figures 6.3-6•9 for additional details. All of the
studied explicit methods produce spurious asymptotes.

For e > 0, the trapezoidal method produces no spurious steady states• However, the
implicit Euler method in addition to maintaining an unconditionally stable feature of
the exact limit cycle, also turns the unstable fixed point U_ = (0, 0) of the ODE (4. l) into
a stable fixed point for r/> l. See Figures 6.5, 6.8 and 6.9 for additional details.
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Bifurcation Diagrams of Numerical Methods for Model (4.2): All of the studied explicit

and implicit methods produce spurious asymptotes. In particular, some of the explicit
methods (even explicit Euler) produce spurious limit cycles for certain e values. For

certain ranges of r and e values the implicit Euler and trapezoidal methods turn the

saddle points of (4.2) into an unstable fixed point of different type (see Figure 6.12). For

the modified Euler method, spurious steady states occur below the linearized stability
limit of the scheme. See Section Vl and Figures 6.10-6.12 for additional details.

Bifurcation Diagrams of Numerical Methods for Model (4.3): Again, all of the

studied explicit and implicit methods generate spurious asymptotes. Also, some of
the explicit methods produce spurious limit cycles. For certain ranges of the r, the

trapezoidal method turns the saddle points (exact fixed points of (4.3)) into unstable

fixed points of different types, and the implicit Euler method turns the saddle points

into stable fixed points of different type. The numerical results coincide with analytical

analysis by examining the eigenvalues of the Jacobian of the resulting discrete map.
Transcritical bifurcations introduced by the R-K 4 method resulted in the production

of spurious steady state below (and very near) the linearized stability limit of the
scheme. See, Section V1 and Figures 6.13 6.18 for additional details.
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More than one spurious fixed point below the linearized stability of the scheme was

introduced by the modified Euler method (see Fig. 5.4). From the form of the modified
Euler scheme it is easily seen that as well as the exact fixed points U E of the ODEs, any

other value U s satisfying

r

Us + -}S(Us) = Ur, (5.14)

will also be a fixed point of the scheme. As mentioned earlier, we refer to these

additional fixed points as spurious fixed points. Note that the Ue on the right-hand side
of(5.14) encompasses both stable and unstable fixed points of the ODE and so, for the

predator-prey equations (since S contains cubic terms in U), there are up to twelve (real)
spurious steady states, three for each exact fixed point U E. In fact there are six such

spurious steady states which lie in the v = 0 plane. All of them occur below the

linearized stability limits of the exact fixed points, although not all are stable there.
Four (stable ones) of the six are shown in the bifurcation diagram of Figure 5.4,

numbered 1, 3, 4, 6 of the bifurcation branch. The other two are unstable. Note also that

the branch numbered 6 is in fact not stable but represents the stable eigen-direction

(separatrix) in the t' = 0 plane of a saddle point.
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Figure5.8 Bifurcation Diagrams Viscous Burgers" Equation, t:=0,1, r=0.333 (Central Difference in
Space).

B!J'urcation Diayrams of Numerical Methods for Model (4.4): For _:= 0, the ODE (4.4) is

nondissipative and thus for small r, slow convergence was experienced. For r beyond
the iinearized limit and with e, = 0 all of the explicit methods produce spurious limit

cycles. For c,> 0 (and not too large) all of the studied 11 explicit and implicit methods

produce spurious asymptotes. Also, all of the explicit methods produce spurious limit

cycles. For t:=0.1, the Kutta and Heun methods introduce spurious asymptotes
(higher than period one) that are below the linearized stability limit of the scheme. See
Figures 6.19 6.25 for additional details.

6, BASINS OF ATTRACTION AND BIFURCATION DIAGRAMS

This section illustrates how basins of attraction can complement the bifurcation

diagrams in gaining more detailed global asymptotic behavior of time discretizations
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for nonlinear DEs. Two different representations of the numerical basins of attrac-
tion were computed on the NASA Ames CM-2. One representation is bifurcation

diagrams as a function of At with numerical basins of attraction superimposed on

a constant v- or u-plane. The other representation is the numerical basins of attraction

with stable asymptotes superimposed on the phase plane (u,_'). Before discussing

numerical results for each of the model ODEs, the next subsection gives some

preliminaries on how to compute and on how to interpret the basins of attraction

diagrams for the CM-2.

6.1 Introduction

To obtain a bifurcation diagram with numerical basins of attraction superimposed on

the CM-2, the preselected domain of initial data on a constant v- or u-plane and the

preselected range of the At parameter are divided into 512 equal increments. Again, for

the bifurcation part of the computations, with each initial datum and At, the discretized

equations are preiterated 3,000 5,000 steps before the next 5,000 iterations (more or
less depending on the problem and scheme) are plotted. The bifurcation curves appear

on the figures as white curve, white dot and white dense dots. While computing the

bifurcation diagrams it is possible to overlay basins of attraction for each value of At

used. For the numerical basins of attraction part of the computation with each value of

At used, we keep track of where each initial datum asymptotically approaches and

color code them (appearing as a vertical strip) according to the individual asymptotes.
While efforts were made to match color coding of adjacent strips on the bifurcation

diagram, it was not always practical or possible. Care must therefore be taken when

interpreting these overlays.

For the basins of attraction on the phase plane (u,v) with selected values of At

and the stable asymptotes superimposed, the (u,v) domain is divided into 512 × 512

points of initial datum. With each initial datum and the selected At, we preiterate
the respective discretized equation 3,000-5,000 steps and plot the next 5,000 steps

to produce the asymptotes. Again, for the basins of attraction part of the compu-
tations, for each value of At used, we keep track of where each initial datum

asymptotically approaches and color code them according to the individual asym-

ptotes. All of the selected time steps At shown are based on the bifurcation diagram

with the basins of attraction superimposed. The chosen time steps were selected

to illustrate special features of the different bifurcation phenomena on the (u,v)
plane. Details of the techniques used for detection of asymptotes and basins of

attraction are given in the appendix of Sweby and Yec (1991). Note that in all of

the plots, ifcolor printing is not available, the different shades of grey represent different
colors.

As a prelimiary, and before discussing our major results, we discuss the numerical

basins of attraction associated with modified Euler, improved Euler, Kutta and R-K 4

methods for the two scalar first-order autonomous nonlinear ODEs studied in part I of

our companion paper (Yee et al., 1991). The two scalar ODEs are:

du
=au{l ul (6.11

dt
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and

du

dt = au(1 - u)(0.5 - u). (6.2)

The fixed points for (6.1) with a>0 are u=0 (unstable) and u = 1 (stable), and no
additional higher order periodic fixed points or asymptotes exist. The basin of attraction

for the stable fixed point u = 1 is the entire positive plane for all values ofa > 0.

The fixed points for (6.2) with a > 0 are u = 0 (unstable), u = 1 (unstable) and u = 0.5

(stable) and no additional higher-order periodic solutions or asymptotes exist. The

basin of attraction for the stable fixed point u = 0.5 is 0 < u < 1for all a > 0. The white

curve, white dots and white dense dots of Figures 6.1 and 6.2 show the bifurcation

diagrams for four of the R-K methods for (6.1) and (6.2). For more details of the dynamics
of numerics for systems (6.1) and (6.2), see Yee et al. (1991). Intuitively, in the presence of

spurious asymptotes the basins of the true stable steady states can be separated by the

numerical basins of attraction of the stable and unstable spurious asymptotes.
Take, for example, the ODE (6.1) where the entire domain u is divided into two basins

of attraction for the ODE independent of any real a. Now if one numerically integrates

the ODE, depending on the scheme and r, extra stable and unstable fixed points of any

order can be introduced by the scheme. The bifurcation part of Figures 6.1 and 6.2,

cannot distinguish the types of bifurcation and the periodicity of the spurious fixed

points of any order. With the numerical basins of attraction and their respective

bifurcation diagrams superimposed on the same plot, the type of bifurcation and to
which initial data asymptote to which stable asymptotes become apparent. Note that
for Figures 6.1 and 6.2 r = aAt.

For example, any initial data residing in the green region in Figure 6.1 for the

modified Euler method belong to the numerical basin of attraction of the spurious
(stable) branch emanating from u = 3 and r = 1. Thus, if the initial data is inside the

green region, the solution can never converge to the exact steady state using even
a small fixed but finite At (all below the linearized stability limit of the scheme). Note

that the green region extends upward as r decreases below 1.Thus for certain ranges of

r wdues, the domain is divided into four basins (instead of two for the ODE). But of

course higher period spurious fixed points exist for other ranges of r and more basins
are created within the same u domain.

A similar situation exists for the R-K 4 method (Fig. 6.1 ), except now the numerical

basins of attraction of the spurious fixed points occur very near the linearized stability
limit of the scheme, with a small portion occurring below the linearized stability limit.

In constrast to the improved Euler method (Fig. 6.1), the green region represents the
numerical basins of one of the spurious stable transcritical bifurcation branches of the

fixed point. The bifurcation curve directly below it with the corresponding red portion

is the basin of the other spurious branch. See Yeeet al. (1991)or Hale and Kocak (1991)

for a discussion of the different types of bifurcations. With this way of color coding the
basins of attraction, one can readily see (from the plots) that for ODE (6. I), the modified

Euler, improved Euler and R-K 4 methods, experience one steady bifurcation before
a period doubling bifurcation occurs (Fig. (6.1)). Using the PC3 method to solve (6.1)

(figure not shown: see Yee et al., 1991), more than one consecutive steady bifurcation

occurs before period doubling bifurcation. For ODE (6.21),the improved Euler experi-
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Fil,ture 6.1 (Sec ('olor Plate I at the back of lhi,, issue I

ences two consecutive steady bifurcations before a period doubling bifurcation occurs

(Fig. [6.2)). Using the PC3 method to solve (6.2)[figure not shown: see Yee et al. 1991 _,

four consecutive steady bifurcations occur before period doubling bifurcations. The

modified Euler and R-K 4 methods, however, experience only one steady bifurcation

before period doubling bifurcations occur.
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Figure 6.2 tSee Color Plate II at the back of this issuc.)

The next section presents similar diagrams for the 2 × 2 systems of model nonlinear

ODEs [4.1) [4.4). In this case, only basins of attraction with bifurcation diagrams

superimposed on t, = constant planes are shown. Selected results for both representa-
tions of numerical basins of attraction are shown in Figures 6.3 6.5, 6.8 6.25 for the

numerical methods. Section 6.6 summarizes similar results presented in Yee and
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Sweby (1993a) for iterative procedures in solving nonlinear systems of algebraic

equations arising from four implicit LMMs. In the plots r = At. White dots and white

curves on the basins of attraction with bifurcation diagrams superimposed represent
the bifurcation curves. White dots and white closed curves on the basins of attraction

with the numerical asymptotes superimposed represent the stable fixed points, stable

periodic solutions or stable limit cycles. The black regions represent divergent
solutions.

Note that the streaks on some of plots are either due to the non-settling of the

solutions within the prescribed number of preiterations or the existence of small

isolated spurious asymptotes. Due to the high cost of computation, no further

attempts were made to refine their detailed behavior since our purpose was to show

how, in general, the different numerical methods behave in the context of nonlinear

dynamics.

6.2 Numerical results ]br the Dissipative Complex Equation

Figures 6.3-6.5, 6.8, 6.9 show selected results for the two representations of numerical

basins of attraction for model (4.1) for e = 1. The exact solution for (4.1) with e -- 1 is

a stable limit cycle with unit radius centered at {0, 0). The basin ofattraction for the limit

cycle is the entire (u, v} plane except the unstable fixed point (0, 0).

Comparing Figures 6.3-6.5 with Figure 5.5, one can appreciate the added informa-

tion that the basin of attraction diagrams can provide. As At moves closer to the

linearized stability limit of the limit cycle, the size (red) of the numerical basins of
attraction decreases rapidly. This is due to the existence of spurious unstable asym-

ptotes below as well as above the linearized stability limit. The green region, shown in

Figure 6.5 using the implicit Euler method, is the numerical basin of attraction for the

stabilized fixed point (0,0). Note how the implicit Euler method turns an unstable fixed

point (0, 0) of the ODE system into a stable one for At >_ I.

Figures 6.6 and 6.7 show the phase trajectories and Figures 6.8 and 6.9 show the

same figures with numerical basins of attraction superimposed for four different At by
the R-K 4 and implicit Euler methods, respectively. Note how little information

Figures 6.6 and 6.7 can provide as compared to Figures 6.8 and 6.9. Note also how

rapidly the size of the basin (red) decreases as At increases for the R-K 4 method. This

phenomenon can relate to practical computations where only a fraction of the

allowable linearized stability limit of At is safe to use if the initial data is not known. For

At = 1.75 and 2, spurious limit cycles of higher order period exist. (The multiple white

circles with only one distinct basin of attraction). In this case, the red regions represent
the basins of the spurious numerical solutions.

Figure 6.9 illustrates the situation where unconditionally stable LM M schemes can

converge to a wrong solution if one picks the initial data inside thc green region which

are valid physical initial data for the ODE. Thus even though LM M preserved the same

number of fixed points as the underlying ODE, these lixed points can change type

and stability. This phenomenon is related to the "non-robustness'" of implicit methods

sometimes experienced in CFD computations. In this type of computation where the

initial data are not known, the highest probability of avoiding spurious asymptotes is

achieved when a fraction of the allowable linearized stability limit of At is employed.
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F'il_ure6.3 {See Color Plate Ill at the back of lllis issue.I

6.3 Numerical Re.sults.[m" the Damped Pemlulum Equation

Selccted results for the studied ntunerical melhods for }:= 1 and }:= 1.5 are shown in

F'igures6.10 6.12. Here, for each At value the different colors represent different

numerical basins of attraction of the respective asymptotes. Observe the striking
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Figure 6.4 (See Color Plate IV at the back of this issue.)

difference in behavior between the explicit and implicit methods. The shapes and sizes
of the numerical basins of attraction by the implicit Euler method for At = 0.1 shown in

Figure 6.12 appear to be similar to the exact basins of attraction of the DE (4.2). From
the different colors of the basins in Figure 6.10 one can readily identify that spurious

higher than period one and spurious limit cycles exist for the different At values by the
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Figure 6.6 Phase Trajectories Dissipative Complex Equation, _: = I, R-K 4.

explicit Euler method. For At = 1.4, the explicit Euler produces spurious period two

fixed points. Figure 6.11 shows the existence of spurious fixed points below the

linearized stability limit by the modified Euler method and spurious fixed points of

period 4 (the four white dots one each basin) above the iinearized stability limit by the

R-K 4 method. Figure 6.12 shows the evolution (birth and death) of spurious fixed

points of higher-order period for the implicit Euler method. This figure illustrates
another situation where unconditionally stable schemes can converge to a wrong

solution even though these schemes preserved the same number and type offixed points

as the underlying ODE. In this case it is the birth of spurious stable and unstable

asymptotes or even numerical chaos that contributes to the size reduction of the true
basins of attraction of the ODE.

6.4 Numerical Results fi)r the Predator-Prey Equation

Selected results for the two representations of numerical basins of attraction are shown

in Figures 6.13 6.18. Comparing Figures 6.13, 6.15, 6.16, with Figures 5.4 and 5.7, one

can again appreciate the added information that the basin of attraction diagrams can
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Figure 6.7 Phase Trajectories Dissipative Complex Equation, e = 1 Linearized Implicit Euler.

provide. Here for all of these figures (except Fig. 6.15 for the last four At values), the

green regions represent the numerical basins of attraction for the stable spiral
(2.1, 1.98) and red regions represent the numerical basins of attraction for the stable
node (0, 0).

The numerical basins of attraction in Figure 6.18 with At = 0.1 appear to be the same

as the exact basins of attraction of the DE (4.3). The numerical basin of attraction by the

implicit Euler for the fixed point (0,0) with At --0.1 is larger than the corresponding
exact basin of attraction for the DE (4.3). In this case the numerical basin of attraction

for the divergent solution (black region) is smaller than the true one. The dramatic

difference in shapes and sizes of numerical basins of attraction for the different methods

and solution procedure combinations compared with the exact basin of attraction is

even more fascinating than for the previous two models.

Take, for example, one of the most interesting cases, the modified Euler method.

Figure 6.15 shows how spurious stable fixed points can alter the numerical basins of

attraction of the stable node and spiral of the ODE (4.3) for time steps that are below the

linearized stability limit of both of these stable fixed points of the ODE (see Figs. 5.4
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Figure 6.8 (See Color I:'latc VI at the hack of this issue t

and 6.13). For At = 0.8, the stable node bifurcates into a spurious lixed point. Without

performing the bifurcation analysis one would not be able to detect this particular

spurious fixed point, since the value of the spurious one is so close to the exact fixed

point UI; = (0,0). For At = 0.9524, there is the birth of a spurious limit cycle (the white

close curve). For At = 1.2, spurious higher-order periodic solutions exist. Note that for
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Figure 6.9 (See Color Plate VII at the back of this issue.)

the first four At values in Figure 6.15, the fixed points and asymptotic values are colored
black instead of white due to the birth of additional numerical basins of attraction that
are colored white.

The implicit methods change the two saddle points into stable or unstable fixed

points of other types as illustrated in Figures 6.14, 6.17 and 6.18. For the implicit Euler,
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Figure 6.10 (Scc ('olor F'latc VIII at the back of thi_, issuc.l

the two fixed points {2.1, 1.98t and (0,0J are unconditionally stable and the stabilized

fixed points (I,0) and (3,0) (saddles for the original OI)E) are almost unconditionally

stable except for small At. This is most interesting in the sense that the numerical basins

of attraction for the stable exact fixed points U_c of the model (4.3} by the implicit Euler

method were permanently altered for At near or larger than 3 as illustrated in
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Figure 6.12 (SeeColor Plate X at the back of this issuc,]

Figures6.14,6.17. It would be easier to interpret the results in Figure6.14 if one
interchanged the yellow and green colors for At _> 1. Observe how the newly created

numerical basins of attraction by the stabilized fixed points (t, 0) and (3, 0) resulted in

the segmentation of the numerical basins of attraction of the stable node (0,0) and

stable spiral (2.1, 1.98). Although the trapezoidal method did not turn the two saddle
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Figure 6.13 (See Color Plate XI al the back of this issue.}

points (1,0) and (3,01 into stable fixed points of different type, they did turn the two

saddle points into unstable fixed points of different type.

The evolution of the numerical basin of attraction as At changes is very traumatic

these implicit LM Ms. The cause of nonconvergence of these implicit LM Ms may due to

the fact that their numerical basins of attraction are fragmented. Take for example the
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trapezoidal method (Fig. 6.18) where the scheme becomes effectively unstable for large
At. The size of the numerical basins of attraction for the stable fixed points U E shrink to

almost nonexistence. This phenomenon might be one of the contributing factor to the

unpopularity of the trapezoidal method in CFD. The basins are so fragmented and

small for large At that they are beyond the accuracy of the CM2 to resolve and no

Figure6.15 [SceColor Plate XIII at the back of this issue.)
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Figure 6.15 (Continued) (See Color Plate XIII at the back of this issue.)

further attempt was made. A better approach in computing these types of basins is to
use interval arithmetic or the enclosure type method (Adams, 1990).

6.5 Numerical Resultsjor the Perturbed Hamiltonian Equation

Selected results for the two representations of numerical basins of attraction of the

various numerical methods for 4:= 0.1 are shown in Figures 6.19 6.25. Our studies
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Figure6.16 (See Color Plate XIV at the back of this issue.)

indicate that all of the studied Runge-Kutta methods exhibit spurious limit cycles and
other spurious periodic solutions. For the Kutta and Heun methods, stable spurious

asymptotes can occur below the linearized stability limit of the scheme. The implicit

methods also exhibit spurious asymptotes. In particular, unstable spurious asymptotes
were produced below the linearized stability limit by all of the studied schemes.
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Althoughthisexampleconsistsofanartificiallysmallnumberofgridpoints,it can
shedsomelighton theinterplaybetweeninitialdata,spuriousstableandunstable
asymptotes,basinsofattractionandthetime-dependentapproachto theasymptotic
numericalsolutions.Asolidunderstandingofthisconceptatthefundamentallevelcan

Figure6.17[SeeColorPlateXVatthebackofthisissuc.I
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help to determine the reliability of the time-dependent approach to obtaining steady-

state numerical solutions.

In all of Figures 6.19 6.25, red regions represent the numerical basins of attraction

for the stable spiral ( li3, t/3) when At is below the linearized stability of the scheme.

When At is above the linearized stability, some of the red regions represent the

numerical basin of attraction of the stable spurious asymptotes. The numerical basins

Figure 6.18 (See ('olor Plate XVI al the back of this issuc.I
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Figure 6.19 (See Color Plate XVII at the back of this issue.)

of attraction in Figures 6.21 with At = 0.1 appear to be the same as the exact basins of

attraction. Note also that the possibility of the numerical basin of attraction being

larger than the exact one does not always occur when the time step is the smallest. The

numerical basin of attraction for (1/3, 1/3) is larger than the corresponding exact basin

of attraction for At = I by the improved Euler and Kutta methods and for At = 0.1 by
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Figure6.21(See Color I'lalc XIX at the back of this issue.)

the implicit Euler and trapezoidal methods. See Figures 6.21 6.24. The following

discusses results for the improved Euler, the Kutta, the implicit Euler and the

trapezoidal methods.

Improved Euler Method: This example illustrates the existence of spurious limit cycles

and its effect on the numerical basins of attraction for the exact steady state. Figure 6.21
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Figure 6.22 [See Color Plate XX at the back of this issue,)

shows the basins of attraction of the improved Euler method for 4 different At = 0.1, 1,

2.25, 2.35 with _: = 0.1. By a bifllrcation computation shown in Figure 6.19, we found

that the first two time steps are below the linearized stability limit around the exact

stable steady state (I/3 1/31, and the last two time steps are above the limit.
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Above the linearized stability limit spurious limit cycles and higher dimensional

periodic solutions were observed. Further increasing At resulted in numerical chaos-

type phenomena and eventually divergence (with additional increase in At). For
At = 2.25 and 2.35, the red or multicolor regions are the basins of the spurious limit

cycle (the irregular white closed curve shown on Fig. 6.21) or other type of spurious

Figure 6.23 {See Color Plate XXl at the back of this issuc.I
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Figure6.24(SeeColorPlateXXII at the back of this issue.)

asymptote (white dots for Fig. 6.21). For these two time sleps the numerical basins for

the exact steady state (1/3, 1/3) by the improved Euler method disappeared. However, if

the initial data are in the red or multicolor region, one gets spurious solution instead of

what the linearized stability predicts divergent solution.
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Kutta Method: To give an example of the existence of spurious stable asymptotes below

the linearized stability limit of the scheme, as well as the existence of spurious limit

cycles above the iinearized stability limit, Figure 6.22 shows the basins of attraction

of the Kutta method for 6 different fixed time steps At =0.l,l, 1.826,1.85,2.75 and
2.785 (the first four below the linearized stability of the scheme) with e--0.1. For

At = 1.826, the numerical basin for (1/3, 1/3) has become fractal like with the birth of

fragmented, isolated new basins of attraction due to the presence of spurious periodic

solutions (the three white complicated closed curves with the associated purple, green
and blue basins shown in Fig. 6.22). The last two time steps in Figure 6.22 show the

diappearance of the numerical basin of attraction for the exact steady state with the

birth of basins for the spurious limit cycle.

Implicit Euler Method: This is yet another interesting illustration of the use of an
unconditionally stable implicit method where in practical computations, when the

initial data are not known, the scheme has a higher chance of obtaining a physically

correct solution if one uses a At restriction slightly higher than that for the stability limit

of standard explicit methods (but with larger numerical basins of attraction than the

explicit method counterparts). Figures 6.20 and 6.23 show the two representations of

numerical basins of attraction using the implicit Euler method. These figures show the

generation of stable spurious asymptotes for At >/1. As At increases further, the size of
the same numerical basin decreases and becomes fractal like, and new numerical basins

are generated. The behavior is similar to the predator-prey model (4.3) in a sense that
the numerical basin of attraction for (1/3, 1/3) was permanently altered for At near or

larger than 10. Observe the fragmentation of the numerical basin of attraction for

(1/3, 1/3) by the basins of the spurious asymptotes.

Trapezoidal Method: Figures 6.20 and 6.24 show the two representations of numerical

basins of attraction using the trapezoidal method. As in the implicit Euler case, this
scheme has a higher probability of obtaining a physically correct solution if one uses a

At similar to that of standard explicit methods (but with larger numerical basins of

attraction than the explicit method counterparts). In a manner similar to the implicit

Euler, the numerical basins of attraction for (1/3, 1/3) are much larger than the

corresponding exact basin of attraction for At _<2. Their sizes are bigger than the ones

generated by the implicit Euler method with the same At values. The scheme becomes

effectively unstable due to the fragmentation of the numerical basins of attraction.

Again due to the high cost of double precision computations, no further attempts were
made for At large. The computation of these basins requires an interval arithmetic or

the enclosure-type (Adams, 1990) of mathematical operation before a more precise
behavior can be revealed.

Straight Newton t;s. Other Studied Methods: Figure 6.25 shows the basin of attraction

using Newton method in solving the steady part of the ODE (hereafter referred to as

straight Newton) compared with the implicit Euler at At = 1. One can see that straight
Newton method has a smaller attracting basin for the stable spiral (1/3, 1/3) than the

implicit Euler method for small At. In fact its basin is the same as the implicit Euler

using larger At. Figure 6.25 illustrates the situation where quadratic convergence by the
Newton method can be achieved only if the initial data are in the red regions.
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Figures 6.23 and 6.25 also illustrates the fact that using very large At by the (linearized)

implicit Euler method has the same chance of obtaining the correct steady state as the
Newton method if the initial data are not known. Comparison of Newton method with

other iteration procedures for the implicit Euler and trapezoidal methods are reported
in our companion paper (Yee and Sweby, 1993a).

Combining the current result with Yee and Sweby (1993a), we can conclude that

contrary to popular belief, the initial data using the straight Newton method may not
have to be close to the exact solution for convergence. Straight Newton also exhibits

stable and unstable spurious asymptotes. Initial data can be reasonably removed from
the asymptotic values and still be in the basin of attraction. However, the basins can be

fragmented even though the corresponding exact basins of attraction are single closed

domains. The cause of nonconvergence may just as readily be due to the fact that its

numerical basins of attraction are fragmented.

6.6 Global Asymptotic Behavior t_f lterative Implicit Schemes

The global asymptotic nonlinear behavior of some standard iterative procedures in
solving nonlinear systems of algebraic equations arising from four implicit linear

multistep methods (LM Ms)in discretizing models (4.1), (4.3) and (4.4)is analyzed in our

companion paper (Yee and Sweby, 1993a). The implicit LMMs include implicit Euler,
trapezoidal, mid-point implicit and three-point backward differentiation methods. The

iterative procedures include simple iteration and full and modified Newton iterations.

The results are compared with standard Runge-Kutta explicit methods, a non-iterative

implicit procedure, and straight Newton method. Here we give a summary of Yee and

Sweby (1993a) so that the reader may get a bigger picture of implicit methods other
than the ones studied in this paper.

Studies in Yee and Sweby (1993a) showed that all of the four implicit LMMs
exhibit a drastic distortion but less shrinkage of the basin of attraction of the true

solution than standard explicit methods studied in this paper. In some cases with
smaller At, the implicit LMMs exhibit enlargement of the basins of attraction of

the true solution. Overall, the numerical basins of attraction of a non-iterative im-

plicit procedure mimic more closely the basins of attraction of the continuum than

the studied iterative implicit procedures for the four implicit LMMs. In general the
numerical basins of attraction bear no resemblance to the exact basins of attraction.

The size can increase or decrease depending on the time step. Also the possible existence
of the largest numerical basin of attraction that is larger than the exact one does

not occur when the time step is the smallest. The dynamics of numerics of the implicit

methods differ significantly from each other, and the different methods of solving
the resulting non-linear algebraic equations are very different from each other

since different numerical methods and solution procedures result in entirely different
nonlinear discrete maps. Although unconditionally stable implicit methods allow

a theoretically large time step At, the numerical basins of attraction (allowable initial

data) for large At some-times are so fragmented and/or so small that the safe (or

practical) choice of At is slightly larger or comparable to the stability limit of standard

explicit methods (but with larger numerical basins of attraction than the explicit

method counterparts). In general, ifone uses a At that is a fraction of the stability limit,
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onehasahigherchanceofconvergenceto thecorrectasymptotethanthestandard
explicitmethods.

Studiesin YeeandSweby(1993a)alsoshowedthatthevariabletimestepcontrol
methodcanoccasionallystabilizeunstablefixedpoints,dependingontheinitialdata,
startingtimestepandtheiterativetolerancevalue.Oneshortcomingisthatthesizeof
Atneededtoavoidspuriousdynamicsisimpracticalto use,especiallyfortheexplicit
method.

7. CONCLUDINGREMARKS

Theglobalasymptoticnonlinearbehaviorandbifurcationphenomenafortheexplicit
Eulermethod,fivedifferentmultistageRunge-Kuttamethods(modifiedEuler,improved
Euler,Heun,Kuttaand4th-ordermethods),twoandthree-steppredictor-corrector
methods,Adams-Bashforthmethod,andimplicitEulerandtrapezoidalmethodwith
linearizationarecomparedfordifferentmodelnonlinearODEs.Thefivemultistage
Runge-Kuttamethodsandthepredictor-correctormethodsarenonlinearin the
discretizedparameterspaceAtandall LMMsarelinearin At.Withtheaidof the
CM-2,thecomplexbehaviorandsometimesfractallikestructureof theassociated
numericalbasinsofattractionofthesetimediscretizationsarecomparedandrevealed
forthefirsttime.

ThenumericalresultsindicatethatwithsufficientlysmallAtandinitialdatacloseto
thesteadystate(usuallynotknownforthetime-marchingmethod),onecanhavethe
highestchanceofconvergencetothecorrectasymptote.Ingeneral,theinitialdatacan
befarremovedfromtheexactsteadystatebythestudiedimplicitmethodsprovided
thatafractionoftheallowabletimesteprestrictionisused.Ourstudyalsoindicates
thatbifurcationto aperiodtwoor lowerorderperiodsolutonisreadilydetectablein
numericalcalculations.However,bifurcationto a limitcyclewillnotbesoobvious
twithoutaphaseportraitrepresentation),especiallyin thevicinityofthebifurcation
point.Indeedthephenomenonofanartificialtimeiterationtosteady-stateofalarge
systemformedbyspatialdiscretizationwhichnearsconvergencebeforetheresiduals
"plateausout",couldactuallybetheresultofastablespuriouslimitcyclearoundthe
Hopfbifurcationpoint.Inaddition,thebifurcationofspiralstolimitcyclesmightaccount
inpartforthephenomenonofnear(butlackof)convergencein largestiffsystems.

ForagiveninitialdataandtwofinitebutdifferentAt'sthatarebelowthelinearized
stabilitylimitofthescheme,theirnumericalsolutionsmightconvergetotwodifferent
solutionsevenifnospuriousstable steady-state numerical solution is introduced by the
scheme and the initial data are physically relevant. The source of the behavior is due to

the existence of unstable spurious asymptotes or stable asymptotes other than steady

states which have the same detrimental tin terms of robustness_ effect. However, in the

case of occurrence of stable spurious steady states, they can be mistaken for the true

steady state in practical computations. In other words depending on the initial data, for

a given At below the linearized stability limit, the numerical solution can (a) converge

to the correct steady state, Ib) converge to a different steady state, (ct converge to

a spurious periodic solution, (d) yield spurious asymptotes other than (a_ Icl, or ie)

diverge, even though the initial data are physically relevant.
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Another important finding is that unlike the scalar first-order autonomous ODE
discussed in part I (Yee et al., 1991), the fixed points can change types as the time step is

varied even for two-time-level unconditionally stable implicit LMMs. An unstable

fixed point can become a stable fixed point and can e.g., change from a saddle to a stable

or unstable node (for a fixed system parameter t:). Since these implicit methods can

introduce spurious asymptotes as well, thus even though LM Ms preserve the same

number but not the same types of fixed points as the underlying DEs, the numerical

basins ofattraction of LM Ms (explicit or implicit l do not always coincide with the exact

basins of attraction of the underlying DEs. One major consequence of this behavior is
that the flow pattern can change type as the discretized parameter is varied. Another

consequence of these phenomena is the fragmentation of the numerical basin of attrac-

tion. In general, unconditionally stable implicit LMMs exhibit less shrinkage of the

basin of attraction of the true solution than standard explicit methods. Another

interesting result is that contrary to popular belief, the initial data using the straight

Newton method may not have to be close to the exact steady state for convergence.

However, we believe that one cause of nonconvergence in straight Newton or implicit
LM Ms with large time step may due to the fact that the numerical basins of attraction

are fragmented.

in conclusion, the present results can explain some of the roots of why one cannot

achieve the theoretical linearized stability limit of the typical implicit Euler and
trapezoidal time discretization in practice when solving strongly nonlinear DEs, e.g. in

CFD. The results can also shed some light in bridging some of the gaps between

theoretical convergence criterion (At---, 0, as n--* ,:f_)and practical scientific computa-

tion (finite At as n -_ _c:).
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Color Plate VI Figure 6.8 (See H.C. Yee and P. K. Sweby.)
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Color Plate X Figure 6.12 (See H.C. Yee and R K. Sweby.)
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Color Plate XIII Figure 6.15 (See H.C. Yee and R K. Sweby.)
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Color Plate XXII Figure 6.24 (See H.C. Yee and P. K. Sweby.)
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Color Plate XXIV

Figure 10 Computed surface pressure contours with store located in captive position
and moving through 0.6, 1.0, 1.6, and 2.0 store diameters below the pylon.
(See A. Arabshahi and D. L. Whitfield)


